Changes in Voluntary Activation Assessed by Transcranial Magnetic Stimulation during Prolonged Cycling Exercise
نویسندگان
چکیده
Maximal central motor drive is known to decrease during prolonged exercise although it remains to be determined whether a supraspinal deficit exists, and if so, when it appears. The purpose of this study was to evaluate corticospinal excitability and muscle voluntary activation before, during and after a 4-h cycling exercise. Ten healthy subjects performed three 80-min bouts on an ergocycle at 45% of their maximal aerobic power. Before exercise and immediately after each bout, neuromuscular function was evaluated in the quadriceps femoris muscles under isometric conditions. Transcranial magnetic stimulation was used to assess voluntary activation at the cortical level (VATMS), corticospinal excitability via motor-evoked potential (MEP) and intracortical inhibition by cortical silent period (CSP). Electrical stimulation of the femoral nerve was used to measure voluntary activation at the peripheral level (VAFNES) and muscle contractile properties. Maximal voluntary force was significantly reduced after the first bout (13 ± 9%, P<0.01) and was further decreased (25 ± 11%, P<0.001) at the end of exercise. CSP remained unchanged throughout the protocol. Rectus femoris and vastus lateralis but not vastus medialis MEP normalized to maximal M-wave amplitude significantly increased during cycling. Finally, significant decreases in both VATMS and VAFNES (∼ 8%, P<0.05 and ∼ 14%, P<0.001 post-exercise, respectively) were observed. In conclusion, reductions in VAFNES after a prolonged cycling exercise are partly explained by a deficit at the cortical level accompanied by increased corticospinal excitability and unchanged intracortical inhibition. When comparing the present results with the literature, this study highlights that changes at the cortical and/or motoneuronal levels depend not only on the type of exercise (single-joint vs. whole-body) but also on exercise intensity and/or duration.
منابع مشابه
18. Muscle fatigue following prolonged dynamic exercise
Muscle fatigue defined as the reduction in the maximum force that a muscle can exert, may develop during prolonged dynamic exercise such as running and cycling. Reduction in maximal voluntary contraction (MVC) force appears generally greater after prolonged running than cycling and can reach ~40% at the termination of exercise. Central fatigue i.e. reduction in efferent motor command to the act...
متن کاملEffects of noradrenaline and dopamine on supraspinal fatigue in well-trained men.
PURPOSE Prolonged exhaustive exercise induces a failure of the nervous system to activate the involved muscles maximally (i.e., central fatigue). Part of central fatigue may reflect insufficient output from the motor cortex (i.e., supraspinal fatigue), but the cause is unresolved. To investigate the potential link between supraspinal fatigue and changes in brain concentration of dopamine and no...
متن کاملIsometric knee extensor fatigue following a Wingate test: peripheral and central mechanisms.
Central and peripheral fatigue have been explored during and after running or cycling exercises. However, the fatigue mechanisms associated with a short maximal cycling exercise (30 s Wingate test) have not been investigated. In this study, 10 volunteer subjects performed several isometric voluntary contractions using the leg muscle extensors before and after two bouts of cycling at 25% of maxi...
متن کاملEffect of Hypohydration on Peripheral and Corticospinal Excitability and Voluntary Activation
We investigated whether altered peripheral and/or corticospinal excitatory output and voluntary activation are implicated in hypohydration-induced reductions in muscle isometric and isokinetic (90°.s(-1)) strength. Nine male athletes completed two trials (hypohydrated, euhydrated) comprising 90 min cycling at 40°C, with body weight losses replaced in euhydrated trial. Peripheral nerve and trans...
متن کاملLocomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles.
Muscle fatigue is a reduction in the capacity to exert force and may involve a "central" component originating in the brain and/or spinal cord. Here we examined whether supraspinal factors contribute to impaired central drive after locomotor endurance exercise. On 2 separate days, 10 moderately active individuals completed a locomotor cycling exercise session or a control session. Brief (2 s) a...
متن کامل